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Abstract Humans can selectively attend to information in
visual scenes. Learning from previous experiences plays a role
in how visual attention is subsequently deployed. For exam-
ple, visual search times are faster in areas that are statistically
more likely to contain a target (Jiang and Swallow in
Cognition, 126(3), 378–390, 2013). Here, we examined
whether similar attentional biases can be created for different
locations on complex objects as a function of their category,
based on a history of these locations containing a target.
Subjects performed a visual search task in the context of novel
objects called Greebles. The target appeared in one half (e.g.,
top) of the Greebles 89% of the time and in the other half (e.g.,
bottom) 11 % of the time. We found a reaction time advantage
when the target was located in a Btarget-rich^ region, even
after target location probabilities were equated. This indicates
that attentional biases can be associated not only with regions
of space but also with specific object features, or at least with
locations in an object-based frame of reference.

Keywords Learnedattention .Probabilitycuing .Attention in
complex objects

The world contains a great deal of visual information that must
be selectively filtered for further processing. Theories of at-
tention have often presented a dichotomy between top-down
goals (Folk et al., 1992) and bottom-up perceptual salience
(Theeuwes, 1991, 1994). However, the deployment of

attention can also be affected by previous experience and re-
sponse histories (Awh, Belopolsky, & Theeuwes, 2012), such
that we may learn to attend to bottom-up information that
consistently facilitates top-down goals. For instance, implicit
learning of regularities in the structure of scenes guides spatial
attention during visual search (Chun & Jiang, 1998). This
ability to abstract regularities from the environment, or statis-
tical learning, can influence how attention is deployed
(Saffran, Aslin, & Newport, 1996; Fiser & Aslin, 2001;
Zhao, Al-Aidroos, & Turk-Browne, 2013).

One form of statistical learning is probabilistic cuing,
wherein attention is implicitly drawn to areas of the visual
field that have a higher probability of containing behaviorally
relevant information. Geng and Behrmann (2005) used prob-
ability cuing in a task in which a target object could appear in
one of four locations. The target was in one of the locations
75 % of the time but in one of the other locations a total of
25 % of the time. Subjects were faster and more accurate to
detect targets in the high probability area compared to low
probability areas. In addition, interference from distractors
was reduced in the high probability location. Other studies
using probabilistic cuing have demonstrated that these atten-
tional biases persist for several days and remain for several
hundred trials after the probabilities are equalized (Jiang,
Swallow, Rosenbaum, & Herzig, 2013b). In these studies,
the spatial bias was acquired rapidly in a short training session,
indicating that probabilistic cuing is a powerful way to direct
spatial attention to frequently selected locations.

One question is whether these spatial attentional biases are
framed relative to the viewer or the external environment.
Viewer-centered frames are low in computational demands
but are relatively unstable because they are sensitive to chang-
es in movement and viewpoint (Marr & Nishihara, 1978). In
contrast, environment-centered frames are more stable to
movement changes but are more computationally expensive.

* Kao-Wei Chua
kao-wei.chua@vanderbilt.edu

1 Department of Psychology, Vanderbilt University, 2301 Vanderbilt
Place, PMB 407817, Nashville, TN 37240-7817, USA

Atten Percept Psychophys (2016) 78:44–51
DOI 10.3758/s13414-015-1040-0

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-015-1040-0&domain=pdf


Jiang, Swallow, Rosenbaum (2013a) found that after acquir-
ing a bias to attend to one quadrant of space, subjects who
were reseated so they were seeing the screen from another
viewpoint switched their bias to a previously sparse quadrant,
demonstrating a viewer-centered frame of reference. This is
consistent with other work showing that contextual cuing is
also viewer-centered (K. P. Chua & Chun, 2003).

Since attentional biases acquired during probabilistic
cuing are long lasting and persistent to statistical changes,
a spatial bias acquired in one task could generalize to
another task. However, recent results suggest that such
transfer may not occur: A bias to attend to a region in
space induced by probabilistic cuing did not transfer to
a foraging task (Jiang, Swallow, Won, Cistera, &
Rosenbaum, 2015). It is possible that spatial biases do
not transfer because space must be shared for all manner
of tasks (e.g., attending to the bottom right is relevant in
typing, cooking, and opening doors). Therefore, general-
ized spatial biased may be counterproductive.

Although spatial aspects of different tasks may be
uncorrelated, different tasks that use the same objects
could depend on a similar set of features. Attention
may be drawn to certain object features (e.g., the eyes
of a face) to discriminate them from other objects in
that category but also to get information about eye gaze
or emotional expression. To the extent that a category is
associated with several tasks for which the same spatial
biases are helpful, or at least not incompatible, a
category-specific but task-general attentional bias could
develop.

One open question is whether learned attentional
biases can occur within objects. When categorizing com-
plex objects, information and features that are diagnostic
can be prioritized. For example, when learning to cate-
gorize different types of fish that varied in the shape of
the tail or mouth, features useful for categorization are
selectively attended (Sigala & Logothetis, 2002),
resulting in a Bstretching^ of the relevant dimension in
a multidimensional category space that increases percep-
tual discrimination along that dimension. A recent study
using similar stimuli cued attention near different parts of
the fish and found a reaction time advantage when the
cue was spatially closer to features crucial for identifica-
tion (Baruch, Kimchi, & Goldsmith, 2014), indicating
that spatial attention can be drawn toward diagnostic ob-
ject features. Likewise, in previous work, we found that
attentional biases could develop to specific parts of faces
(K. W. Chua, Richler, & Gauthier, 2014) and novel ob-
jects (K. W. Chua, Richler, & Gauthier, 2015) due to
their history of being useful for individuation. In these
studies, subjects were trained to individuate faces or
Greebles wherein one half contained most of the infor-
mation diagnostic for identification. When later asked to

selectively attend to just part of those objects, subjects
could not ignore parts that were previously diagnostic.

Here, we ask if spatial attention can be learned in a
category-specific manner (e.g., learning to attend to the
top of an object) without requiring object individuation.
In the fish experiments mentioned previously (Baruch et
al., 2014), attention was drawn to features crucial for ob-
ject recognition (see Rehder & Hoffman, 2005a, b). In the
Greeble experiments, a history of finding information rel-
evant to individuation in an object part made it harder to
ignore (K. W. Chua et al., 2015). Here, we ask if learned
attentional biases to object parts can occur when the ob-
ject is not relevant for the task, whether these biases gen-
eralize to other objects of the same category, and whether
they persist once probabilities are equated, as in viewer-
centered probability cuing.

To investigate these questions, we used probability cuing
with two Greeble categories. Subjects had to detect a valid
BT^ among distractors and were asked to indicate what di-
rection the head of the T was pointing. Critically, the target
appeared in the top half of one Greeble category 89 % of the
time and the bottom half of the other Greeble category 89 %
of the time. In the second half of the experiment, we equated
target location probabilities for all object halves and exam-
ined whether target detection remained faster in object re-
gions with a history of high target probability.

Experiment 1

Method

Subjects

Twenty-one subjects participated in Experiment 1 (8 male,
13 female, mean age = 20.1 years). Sample size was de-
termined based on a power analysis using the effect size
from a previous probabilistic cuing study (Cohen’s d =
1.6; Jiang et al., 2013a), aiming for power greater than
0.90 with alpha = 0.05 (two-tailed). Subjects received
class credit. The study was approved by the Vanderbilt
University IRB.

Stimuli

Stimuli were objects from two categories of asymmetrical
Greebles (Gauthier & Tarr, 1997; K. W. Chua et al., 2015)
called Ploks and Glips. Ploks and Glips have distinct body
shapes, textures, and parts that point in different directions
(up vs. down; see Fig. 1). Twenty unique Greebles from each
category were used. All Greebles were presented in grayscale
and tilted 40° clockwise. Greeble images were 400 ×
400 pixels.

Atten Percept Psychophys (2016) 78:44–51 45



Procedure

On each trial, subjects saw a single Greeble. Avalid sideways
BT^ and a slightly offset BT^ were superimposed on the top
and bottom halves of the Greeble after 0.5 seconds. This 0.5-
second latency period gave subjects time to scan the features
of the Greeble before the target appeared. Both BT^ shapes
were displayed in a darker gray than the Greeble. The task was
to press the left or right arrow key to indicate the direction the
head of the valid BT^ was pointing. A beeping noise was
played for incorrect answers. There were 1,152 trials with four
blocks of 288 trials.

Critically, the valid BT^appeared in one half of one Greeble
category 89 % of the time (e.g., the top of Glips) and in the
other half of the other Greeble category (e.g., the bottom of
Ploks) 89 % of the time (part assignment counterbalanced).
For the first half of the experiment (576 trials; blocks 1 and 2),
subjects saw Greebles with this probability asymmetry. In the
second half of the experiment (blocks 3 and 4), the target
probabilities were equated to assess if the attentional bias
would persist. Target-rich locations were defined as the areas
in each Greeble where the target was most likely to appear
(89 %), and sparse locations were defined as the areas where
the target appeared less often (11 %). Importantly, richness is
defined through a combination of category membership and
object-specific location (e.g., the tops of Ploks and the bottom
half of Glips, wherever they appear on screen), so it is unlikely
that there was a bias based on screen position.

The Greeble could appear in one of nine locations on a 3 ×
3 grid that spanned 1,200 × 1,200 pixels in the center of the
screen. Positions were randomized on each trial to minimize
any attentional bias due to screen position. Note that there is
an overall screen-based bias because targets were on average
higher (or lower) on the screen for one category. However, the
target distributions for the two categories overlapped greatly,
and no location had greater probability when category was not
taken into consideration.

Results

Subjects were as accurate when the target was in the rich half
(94.4 %) versus the sparse half (93.3 %), p = .33, ηp

2 = 0.04.
Our analyses therefore focus on mean correct response times.
Trials with RTs faster than 200 ms and slower than 2,000 ms
were excluded (0.006 % of trials).

We were first interested in whether there was an interaction
between target richness (or prior history of target richness) and
block number. To that end, we ran an ANOVA on reaction
time with target richness and block as factors, but there was no
interaction between block and target richness, F(3, 60) =
0.188, p = .90, ηp

2 = 0.009. Thus, we decided to look at the
effects of the probability manipulation in each individual
block. We ran one-way ANOVAs on reaction time in each
of the four blocks with target richness (or prior history of
target richness) as a factor (see Fig. 2). There was no proba-
bility cuing advantage in Block 1, F(1, 21) = 2.52, p = .13, ηp

2

= 0.11, but subjects became faster in the target-rich half
starting in Block 2, F(1, 21) = 15.81, p < .001, ηp

2 = 0.44.
Most critically, this bias was still significant in Block 3, F(1,
21) = 7.53, p = .01, ηp

2 = 0.27, but extinguished in Block 4,
F(1, 21) = 1.22, p = .28, ηp

2 = 0.06.

Experiment 1 Discussion

Probabilistic cuing is a powerful means of directing atten-
tion to areas of space (Jiang et al., 2013a). Most studies to
date have focused on these spatial biases in an
environment-based frame of reference. Here, attention
was drawn to target-rich parts of complex objects. This
bias started in the second block and persisted into the
third block, providing evidence that the attentional bias
lasted several hundred trials after the probabilities were

Fig. 1 An example of a Glip and a Plok. For the first two blocks of the
study, the valid BT^ target appeared in one half (e.g., top) of one Greeble
category 89% of the time, and it appeared in the complimentary half (e.g.
bottom) of the other category 89% of the time. In both examples, the head
of the valid T is pointing Bright^
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Fig. 2 Results from Experiment 1. Reaction time to indicate the direction
the valid BT^was pointing by target richness. Error bars are 95 % within-
subject confidence intervals
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equated. However, by the fourth block, there was no ev-
idence of any attentional bias. These results are similar to
Jiang et al. (2013b), who found that a bias to attend to
rich quadrants of space lasted for a few hundred trials
before being extinguished.

Because we used 20 Greebles from each category, it seems
reasonable to assume that the effect was associated with the
categories and not specific objects. To provide a more direct
test of this interpretation, we conducted Experiment 2, which
differed from Experiment 1 in three ways. First, we used dif-
ferent sets of objects during the first two blocks where prob-
abilities were asymmetric and the last two blocks where prob-
abilities were equated. If the advantage for the target-rich half
persists even after exemplars are changed, we will have evi-
dence that the learned attentional bias is associated with fea-
tures that define the two Greeble categories. Second, there was
sufficient variability among subjects in Experiment 1 that we
wondered if this was due to variability in subjects noticing that
there were two discrete categories of objects. Could we max-
imize learning by ensuring that subjects knew there were two
Greeble categories? Would this produce biases that persist
until Block 4? To this end, we included a short categorization
task before the visual search task. Finally, to encourage learn-
ing to begin as early as possible, we encouraged accuracy in
the visual search task using an aversive timeout following
incorrect answers.

Experiment 2

Method

Subjects

Twenty-three subjects participated in Experiment 2 (10 male,
13 female, mean age = 18.9 years) for class credit. The sample
size was based on the same power analysis as Experiment 1.
The study was approved by the Vanderbilt University IRB.

Stimuli

For the first two blocks, the stimuli were the same as
Experiment 1. For the last two blocks, a new set of 20 Ploks
and 20 Glips was used (see Fig. 3). Another set of 10 unique
Ploks and Glips was used in the categorization task performed
before the visual search task.

Procedure

Categorization Task For each trial, subjects saw either a Plok
or Glip. They were instructed to press Bp^ if the Greeble was a
Plok or Bg^ if it was a Glip. Subjects learned through correc-
tive feedback, and all subjects completed 60 trials.

Probabilistic Cuing Task The procedure was the same as in
Experiment 1 except that 20 new, unique Ploks and Glips were
used as stimuli starting in Block 3. Additionally, when sub-
jects made an incorrect response, they saw a feedback screen
for 1,500 ms that encouraged them to answer as accurately
and quickly as possible.

Results

Subjects were more accurate when the target was in the rich
half (95.7 %) as opposed to the sparse half (94.8 %), F(1, 22)
= 13.68, p = .001, ηp

2 = 0.13. We again focused our analyses
on mean correct reaction times. Trials with RTs faster than
200 ms and slower than 2,000 ms were excluded (0.009 %
of trials).

As in Experiment 1, we conducted one-way ANOVAs for
each block with target richness (rich or sparse) as a factor.
There was a marginally significant probability cuing advan-
tage in Block 1, F(1, 22) = 3.16, p = .08, ηp

2 = 0.13, which
doubled in size and became significant in Block 2, F(1, 22) =
9.36, p < .006, ηp

2 = 0.29. This bias persisted until Block 3,
F(1, 22) = 11.7, p = .002, ηp

2 = 0.35, before extinguishing in
Block 4, F(1, 22) = 1.53, p = .23, ηp

2 = 0.07. Figure 4 shows
reaction times for the rich and sparse halves by block.

Experiment 2 Discussion

In Experiment 2, we replicated the basic finding in
Experiment 1, with an attentional bias developing in the sec-
ond block of the asymmetric probability phase. This bias
lasted until the third block and was extinguished in the fourth.

Fig. 3 Examples of Greebles used in Experiment 2. The initial Glips and
Ploks were used for the first half of the experiment, and the newGlips and
Ploks were introduced starting in the third block
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New exemplars were introduced in Block 3, when the proba-
bilities were equalized. The attentional bias persisted even in
these conditions, suggesting that the bias was not limited to
the exemplars encountered during the first half of the experi-
ment, but it transferred to new exemplars based on category
membership.

Subjects categorized the two categories of Greebles, but the
explicit categorization task before the probability cuing
seemed to have little effect on the overall pattern of results.
Previous studies of probability cuing have made the distinc-
tion between whether the learning that takes place during
these paradigms is implicit or explicit (Jiang, Won, &
Swallow, 2014), so it is possible that subjects had detected
the probability asymmetry and were using a more explicit,
top-down strategy when performing the visual search. To test
this possibility, we conducted Experiment 3. Subjects per-
formed two blocks of the probability cuing task with the prob-
ability asymmetry (89 %/11 %). Afterwards, they performed a
posttest assessment wherein a Greeble was shown on screen
and subjects were to predict whether a target would appear on
the top or bottom. Performance above chance in this task
would indicate some explicit knowledge of the probability
manipulation. Additionally, we were interested in whether
performance on this posttest might be predictive of the mag-
nitude of the attentional bias to target rich parts.

Experiment 3

Method

Subjects

Forty-five subjects participated in Experiment 3 (15 male, 30
female, mean age = 18.6 years) for class credit. This sample

size was chosen to allow detection of correlations between
posttest accuracy and the attentional bias of 0.4 or above, with
80% power at an alpha of .05. The study was approved by the
Vanderbilt University IRB.

Procedure

Probabilistic Cuing Task The probability cuing task was
identical to the first half of Experiment 1. The task consisted
of 576 trials with the probability asymmetry in two blocks of
288 trials. As before, the valid BT^ appeared in one half of one
Greeble category 89 % of the time (e.g., the top of Glips) and
in the other half of the other Greeble category (e.g., the bottom
of Ploks) 89 % of the time (part assignment counterbalanced).

Posttest Following probability cuing, subjects performed a
short task to assess explicit knowledge of the category-
specific probability asymmetry. On each trial, they saw a
Greeble appear on screen in one of the nine positions used
for the probability cuing task. Subjects were instructed to in-
dicate whether they thought the target was more likely to
appear in the top or bottom half. Accuracy was assessed by
whether subjects chose the Greeble half that was target rich
during the probability cuing phase. Greebles appeared in each
of the nine possible areas twice for both categories, resulting
in a total of 36 trials.

Probability Cuing Results

Subjects were more accurate when the target was in the rich
half (95.7 %) as opposed to the sparse half (94.8 %), F(1, 22)
= 13.68, p = .001, ηp

2 = 0.13. We again focused our analyses
on mean correct reaction times. Trials with RTs faster than
200 ms and slower than 2,000 ms were excluded (0.003 %
of trials).

We conducted one-way ANOVAswith target richness (rich
or sparse) by block. In Block 1, there was a significant prob-
ability cuing effect, F(1, 44) = 22.4, p = .0001, ηp

2 = 0.33.
This bias remained in Block 2, F(1, 44) = 13.3, p = .0007, ηp

2

= 0.23, although there was no significant interaction between
richness and block, F(1, 44) = 0.28, p = .6, ηp

2 = 0.006. Thus,
the average magnitude of the attentional bias did not change
over the course of the experiment (see Fig. 5).

Posttest Results

Mean accuracy in the posttest was 52.7 % (ranging from 36%
to 94 %), which was not significantly different from chance (p
= .072). As a group, the subjects were unable to predict where
the target would appear above chance, although it is clear from
the range that some subjects may have. Only five subjects
performed above chance according to a one-tailed sign test
(greater than 66 %). The mean reaction-time advantage
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Fig. 4 Results from Experiment 2. Reaction time to indicate the direction
the valid BT^was pointing by target richness. Error bars are 95 % within-
subject confidence intervals
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(sparse–rich) for the subjects with above chance performance
was 33.4 ms in Block 1 and 61.2 ms in Block 2. With these
subjects removed, the mean reaction time was 21.2 ms in
Block 1 and 18.6 ms in Block 2. Critically, even with the
subjects who did not have knowledge of the manipulation,
the extent of the reaction time bias was significant in Block
1, F(1, 39) = 17.1, p = .0002, ηp

2 = 0.30, and Block 2, F(1, 39)
= 7.4, p = .001, ηp

2 = 0.16, suggesting that the bias was not
driven by those with explicit knowledge of the manipulation.

We then examined the magnitude of the reaction time ad-
vantage to determine whether there was any relationship be-
tween performance on the posttest and the strength of the
attentional bias. We correlated the magnitude of the reaction
time advantage with accuracy on the posttest for each block.
There was no correlation found between posttest performance
and the RT advantage in Block 1 (r =.11, p = .48), but this
correlation was stronger in Block 2 (r = .50, p = .0005). These
correlations are shown in Fig. 6. These effects still held when
the subjects who had knowledge of the manipulation were
removed (posttest & Block 1, r = - 0.01, p = .94; posttest &
Block 2, r = .41, p = .009).

Additionally, the mean reaction time advantage in Blocks 1
and 2 was similar (22.3 ms in Block 1, 21.7 ms in Block 2).
However, there was no correlation between the reaction time
advantage in Block 1 and Block 2 (r = -.15, p = .33), suggest-
ing little relationship between the reaction time advantages
within individual subjects over the course of the experiment.

Experiment 3 Discussion

With Experiment 3, we were interested in the possibility that
explicit knowledge could have an impact on statistical learn-
ing effects. Mean performance was no different from chance,
although it was clear that some subjects had explicit knowl-
edge of the probabilities of target location. Five out of 45
subjects performed significantly above chance after 576 trials

of the 89 %/11 % probability regimen, and these subjects
showed reaction time advantages for rich areas greater that
were greater than average, suggesting that explicit knowledge
may contribute to the effect. By the second block, there was a
positive relationship between posttest performance and the
reaction time advantage for cued locations.

However, there is also evidence that most subjects had little
explicit knowledge and nonetheless showed cuing effects.
Therefore, despite very large cuing probabilities (higher than
those in prior spatial cuing studies; e.g., Jiang et al., 2013a),
we also find evidence that the present effects are to some
extent implicit.

General Discussion

Previous studies demonstrated spatial attentional biases elicit-
ed by probability asymmetries in visual search (Jiang, et al.,
2014). Here, we demonstrate for the first time an attentional
bias to regions of complex objects that frequently contained
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targets in the past. These biases extended beyond the trained
exemplars and therefore had to depend on features that define
category membership (such as the body shape, part orienta-
tion, and/or texture). Importantly, this bias was category spe-
cific and was not associated with a specific location on the
screen because the rich locations were defined by a combina-
tion of category membership and object-specific location
(e.g., the top of Glips and the bottom of Ploks, wherever they
were shown on the screen).

Accordingly, this work expands upon the frames of refer-
ence on which spatial biases can operate. Previous studies
elicited a bias to certain regions in a viewer-centered frame
of reference, whereas in the current study, attention was drawn
to specific features in an object-based frame of reference. We
should note, however, that we would not expect this to be a
viewpoint-dependent frame of reference that would rotate
with the object, because learning with complex objects is
viewpoint specific (e.g., Ashworth, Vuong, Rossion & Tarr,
2008; Rossion & Curran, 2010). Therefore, the present effects
could represent a mixture of an object-based frame of refer-
ence and viewpoint-specific object representations.

The kind of implicitly learned attention that inspired this
work, probability cuing (Geng & Behrmann, 2002), can be
relatively long lasting, but recent work demonstrated that the
bias is actually viewer centric (Jiang& Swallow, 2013), which
led the authors to suggest that probability cuing may be too
egocentric to play a valuable role in everyday tasks. More
recent work by the same group revealed that probability cuing
is also task specific: It does not transfer between a visual
search and foraging task (Jiang, Swallow, Won, Cistera, &
Rosenbaum, 2015).

Given that there is not one set of spatial biases in an ego-
centric frame of reference that applies to all tasks, it is reason-
able that attentional mechanisms influenced by probability
cuing would adapt to the statistics of the world. Jiang et al.,
(2013a) suggested that the effects are akin to the how visual
stream in Milner and Goodale’s (1995) two-stream model. In
contrast, the extension of probability cuing to an object-
centered frame of reference that is category specific evokes
properties of the what visual stream. While we only found
relatively short-lasting effects once target location probabili-
ties were equated, category-specific biases could be more sta-
ble when target probabilities are never completely equated.
While we can certainly perform different tasks with the same
object, many object categories are associated with one pre-
dominant task (e.g., we handle tools, we select fruits for edi-
bility, we identify letters). Another learned attention phenom-
enon, context-specific control, refers to learned mappings be-
tween a stimulus and attentional filters that can be retrieved by
environmental cues (Jacoby, Lindsay, & Hessels, 2003).
These filters form when specific items in a selective attention
task are mostly congruent or incongruent (Bugg & Crump,
2012). In previous studies of context-specific control, certain

locations (above or below fixation) were associated with a
high proportion of congruency in a Stroop task (Crump,
Gong, & Milliken, 2006). Stroop effects were highest for
probes appearing in high congruency locations. Critically,
the location of the cue was not task relevant but acted as an
environmental cue that retrieved certain attentional settings. In
the current study, the Greebles themselves serve as the context
cues that indicated where the target was most likely to appear,
and attentional biases are formed to the target-rich Greeble
parts. Thus, we extend previous studies of context-specific
control by demonstrating that parts of complex objects can
act as contextual cues that retrieve attentional settings.

The resulting learned attentional settings as a result of
context-specific control can transfer to new objects of a
trained category (Bugg, Jacoby, & Chanani, 2011), including
categories of complex objects like faces (Cañadas, Rodríguez-
Bailón, Milliken, & Lupiáñez, 2012). The present work ex-
tends context-specific control to locations within (or to the
parts of) an object. Our results therefore share features with
the effects obtained in both probability cuing and context-
specific control and suggest that attentional mechanisms op-
erate at a level of generalization and specificity that may ac-
count for some category-specific effects observed in the object
and face recognition literatures (K. W. Chua et al., 2014,
2015).
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